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Dynamical properties of a confined diatomic fluid undergoing zero mean oscillatory flow:
Effect of molecular rotation
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In this paper we investigate the spatiotemporal dynamics of a diatomic fluid undergoing zero mean oscilla-
tory flow in a slit pore. The study is based on nonequilibrium molecular dynamics simulations together with
two limiting solutions to the Navier-Stokes equations which include the effect of molecular rotation. By
examining the viscoelastic properties of the system we can estimate the extent of the Newtonian regime, and
a direct comparison between the molecular dynamics data and the solutions to the Navier-Stokes equations is
then possible. It is found that the agreement is excellent, and that the vortex viscosity can be estimated by
fitting the data obtained in the molecular dynamics simulations to the solutions to the Navier-Stokes equations.
The quantitative effect of the coupling between the linear momentum and the spin angular momentum on flow
is also investigated. We find that the maximum flow can be reduced up to 3—4 % due to the coupling.
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I. INTRODUCTION

Classical fluid dynamics is concerned with the spatiotem-
poral dynamics of the fluid density, linear (or translational)
momentum, and energy [1]. In this description these three
quantities are coupled together via the balance equations, and
by applying the phenomenological constitutive relations the
corresponding Navier-Stokes formulation forms a closed set
of equations [1,2], together with an equation of state [3]. The
Navier-Stokes approach can be used to describe, for ex-
ample, the air flow over an aircraft wing or an alkane fluid
flowing in a microchannel. While such general theory is el-
egant, it excludes all microscopic dynamical features present
in the system. Moreover, it ignores the coupling between the
internal molecular degrees of freedom and the macroscopic
quantities, e.g., the coupling between the molecular rotation
and the fluid’s translational momentum [4,5]. Only in very
few situations can the coupling between the internal molecu-
lar degrees of freedom and the translational motion be safely
ignored; however, this is not the situation in general. Never-
theless, it has become “the standard” to ignore this coupling
and thereby also dismiss all the information about the micro-
scopic degrees of freedom.

While this fact is well known, no one has, to our knowl-
edge, performed any quantitative investigation estimating the
error introduced when ignoring this coupling. Evans and
Streett [6], Travis et al. [7,8], Delhommelle and Evans [9],
and Radzyner and Rapaport [10] have studied rigid bonded
diatomic molecular fluids undergoing a steady Poiseuille
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flow. For this problem it is possible to solve the extended
Navier-Stokes equations, which include the coupling be-
tween the molecular rotation and the translational momen-
tum [4]. These studies were all based on a comparison
between nonequilibrium molecular dynamics (NEMD) simu-
lations and the solution to the Navier-Stokes equations. It
was shown that the extended Navier-Stokes theory qualita-
tively agreed with the NEMD results, except near the wall-
fluid boundary, where large velocity slip, molecular align-
ment, and density variations are present. However, as we will
discuss later, one cannot expect that the molecular rotation
has a large (if any) effect on the translational momentum
when the fluid flows in a steady manner. That is, the flow
profile is neither qualitatively nor quantitatively different
from that of the corresponding simple atomic fluid. This is
not the case for unsteady flows, e.g., a zero mean oscillatory
flow. Knowledge of the effect of the coupling may therefore
be very relevant when manufacturing mixing devices and
micropumping mechanisms [11,12].

The purpose of this paper is therefore threefold: (i) to
solve the Navier-Stokes equations for a zero mean oscillatory
flow including the coupling between the molecular rotation
and the translational momentum, (ii) to perform NEMD
simulations of a diatomic fluid undergoing such flow and
validate the Navier-Stokes solution against simulation data,
and (iii) to quantitatively analyze the effect of molecular ro-
tation on the translational momentum. In order to accomplish
this, the paper is organized as follows. In Sec. II we derive
and present two limiting solutions to the Navier-Stokes equa-
tions. Section III briefly describes the details connected with
the molecular dynamics simulations, and in Sec. IV we dis-
cuss the results and highlight the effect of the molecular
rotation. Section V is devoted to conclusions.
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II. LIMITING SOLUTIONS TO THE NAVIER-STOKES
EQUATIONS

In the Appendix we derive the Navier-Stokes equations,
which include the coupling between the streaming spin an-
gular momentum s and the streaming velocity u. In the case
of an incompressible fluid and in the absence of any applied
external torque these are

E:pFe—Vp+(7]0+ 7)Vu+27,(VXw), (1)

P =2m VX u=2W) (G, + G3-L) ¥ (VW)

+(L+E)VPw, (2)

where p is the mass density, F, is the external force per unit
mass, w is the streaming angular velocity, 7, and 7, are the
shear and the vortex viscosities, and ¢, {,, and ¢, are the
vortex spin viscosities. The streaming spin angular momen-
tum is given by s=@-w, which for uniaxial molecules re-
duces to [7]

s=0Ow (3)

where O is the average of the trace of the inertia tensor @.
Now, we let the fluid be confined between two planar walls
and the direction of confinement be the y direction. We shall
think of the x and z directions as being of infinite extent. A
force F,(1) acts on the fluid in the x direction and, since the
system is homogeneous in the x direction, the pressure gra-
dient in this direction is zero. The force has a sufficiently low
amplitude such that the streaming velocity is in the x direc-
tion only. In this case the Navier-Stokes equations reduce to

dudy.0) _ 0+ (ot V)&zu (y,1) 2Vrﬂwz(y,t)’ @
at ay* dy
O™ g0 (MO0 o ) ¢ er )G
t ady
(5)

where u,(y,7) is the streaming velocity in the x direction,
w.(y,1) is the z component of the streaming angular velocity,
v, is the kinematic shear viscosity, v, is the kinematic vortex
viscosity, and & and &, are the kinematic vortex spin viscosi-
ties. Note, that due to the geometry and the low external
force amplitude, V-w=0.

Before we continue it would be of interest to estimate the
contributions of the two terms on the right-hand side of Eq.
(5). According to Evans and Streett [6] and Evans and Han-
ley [13], the vortex viscosity for liquid nitrogen is 7,=4
X107 kg m~' s7! and the vortex spin viscosities are (=3
X 1072* kg m s™! and £,=2X 107>* kg m s~!. This indicates
that the diffusion term in Eq. (5) can be ignored even for
relatively large gradients in the streaming angular velocity:
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ow,(y,t
ﬂ ~_2vp

( Au,(y,1)
at " dy

+ 2wz(y,t)) . (6)

For steady flows dw_(y)/dt=0, which means that 2w_.(y)
=—du(y)/dy or

dw.(y) __ 1du(y) )

dy 2 dy?

Substituting this relation into Eq. (4), we see that the two
terms involving v, cancel, and we end up with the usual
Navier-Stokes equation for a steady flow:

Fuy,)  F,
o"y2 T V(). ®

Thus, there is no effect of the molecular rotation on the
streaming velocity.

We therefore wish to study an unsteady flow. We will here
investigate the simple case where the external force field is a
trigonometric function of time, F,(f)=F cos(wt), where F|,
is the force amplitude and w is the angular frequency of the
force. The problem is simplified considerably by adopting
complex notation, in which case

F,(t) =Re(Fye'). 9)

Since we are interested in the limiting behavior t—, i.e.,
where the transients have decayed and the oscillatory flow
exhibits steady amplitude, both the streaming velocity and
the streaming angular velocity are written as products of a
spatial function and an oscillatory temporal factor with the
same frequency as the external force field. In complex nota-
tion,

u(y,1) = Re[U(y)e™], (10)

w.(y,1) = Re[W(y)e™]. (11)

Substituting Egs. (10), (11), and (9) into Egs. (4) and (5), we
obtain

2
ioU(y) = F0+(v0+v)d v) 2V,dv;/)()y), (12)
p
iw®w<y>=—2v,(dl;;y)+2W<y)) e
(13)

It is possible to solve this inhomogeneous second-order dif-
ferential equation system, but the solution is algebraically
very involved and uninformative. We therefore turn to limit-
ing solutions.

A. The limit £+&—0

As just described above, it is a reasonable approximation
to ignore the diffusion term in Eq. (5). This assumption can
fail, especially near the wall-fluid boundary; nevertheless, it
enables a very simple solution. Equation (13) yields
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W(y) = — 2y, dU(y)

—_— 14
iw®+4v, dy (14)

Differentiating both sides and inserting the result into Eq.
(12), one obtains an inhomogeneous second-order differen-
tial equation:

4v; )dzU(y) ~

iwU(y) — +v,.—- =F,. 15
lw (y) (VO Yy iw®+4vr dy2 0 ( )

Applying nonslip boundary conditions [U(0)=U(2R)=0,
where R is half the channel width] and Eq. (10), the solution
for the streaming velocity is

(y.) =R FO( + G inh(\"y) ”) o
,t)=Re| — ——————sin -t ,
ey io\ " sinh(yR)S Y Ten)e
(16)
where
,_( w(div,— w0) )”2 (17)
NiwB(vy+v,) +4v,1y)

The streaming angular velocity is given from Eq. (14):

2V,)\’F()

) =Re| - ———"—
we(.1) { 0’0 +4viw

2\ r_l ) )
X| —————cosh(\'y) — &' | |. (18
(sinh(2)\'r)cos (A'y) =€ Je (18)

B. The limit w—0

For sufficiently small channel width and small external
force frequency, i.e., essentially a Poiseuille flow with a qua-
dratic velocity profile, the differential equation system given
by Egs. (12) and (13) can be solved analytically by applying
nonslip boundary conditions. In this situation the streaming
angular velocity is given by the functional form [4]

W(y)=%<z— - sinh[K(y—R)]>,

R sinh(KR) (19)

where K has units of inverse length and u,. of length per unit
time, i.e., velocity. Both K and u, are function (or model)
parameters that must be fitted from data obtained by NEMD
simulations, for example. If we inspect Eq. (19), we see that
W(y) consists of a linear part and a hyperbolic part. For large
values of K, i.e., K>1, the hyperbolic term is significant
only near the wall-fluid boundary, where it forces the angular
velocity to zero in accordance with the boundary conditions.
The angular velocity in the interior of the channel will then
be given as a linear function of y with slope u./R?, which in
turn means that u,. depends on the ratio between the external
force and the viscosity, i.e., u.* F,/ vy, in agreement with the
case of a steady Poiseuille flow. For K<1 the hyperbolic
term will dominate the behavior of W(y) for all y. Thus, K is
a constant that describes how the effect from the wall on the
angular velocity extends into the channel. This means that
small values of K indicate large wall penetration depth and
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large values of K indicate small penetration. See also Ref. [8]
for a discussion of steady flows.

As stated above, the functional form is based on the as-
sumption that the streaming velocity is quadratic with re-
spect to the spatial coordinate. This assumption means that
the viscous force is dominating, which can be quantified via
the Stokes parameter, which is often used to characterize
oscillatory flows [14]. We will here define it as A
=Vw/2(vy+v,)R. Thus, for sufficiently small Stokes param-
eter, Eq. (19) is valid. In the simulations R never approaches
zero, so we will therefore simply let w— 0 when we study
the fluid for small Stokes parameter. In the case where the
inertia forces dominate (large Stokes parameter), the velocity
profiles will exhibit spatial oscillations, and in the limit of a
purely inviscid fluid flow (A — ) the velocity profile will be
flat and vary only with respect to time.

Now, adopting the limiting solution to the streaming an-
gular velocity, we substitute Eq. (19) into Eq. (12) and obtain
a simple inhomogeneous second-order differential equation,

d*U
wU0) = G+ 1) 2
B 2v,u, KR cosh[K(y = R)]
=Fo+ (1 "~ sinh(KR) ) (20)

which we will assume satisfies nonslip boundary conditions.
The solution to this problem is given by

MR _ 1
U(y) = A<1 —eNt —sinh(ky))

sinh(2\R)
< 2N _ 1
+ B cosh(KR)| " — —————sinh(\ )
cosh(KR)| e Snh(INR) sinh(\y)
— B cosh[K(y - R)], (21)
where
. 12
\= ( < ) : (22)
L) + v,
FoR*+2v,u,
A=—T—7F5—, 23
ioR? (23)
2 K
Dl (24)

B = [0+ v)K? — iw]sinh(KR)"

The solution for the streaming velocity in the limits A —0
and t— is then given by

R ‘
u(y,t)=Re A(l -Vt —sinh(ky))e”‘”

sinh(2\R)
N
B cosh(KR)| e» — —————sinh(\ ) ot
+B cosh( )(e sinh(2)\R)sm \y) |e
— B cosh[K(y — R)]eiwt} . (25)

It is important to observe that A=Fy/iw for v,=0 and
lim, o B=0. In this situation Eq. (25) reduces to the solu-
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FIG. 1. Streaming velocity in the center of the channel as a
function of the kinematic vortex viscosity for different values of F:
Foy=2W'1y+0.05 (broken line), 2W’1,—0.05 (full line), and 2W',
(dotted line); W' =0.01 and vy=4.0.

tion of an atomic fluid with no molecular spin; see, for ex-
ample, Engelund [14,15]. Also note that \ is related to the
Stokes parameter by A= \2iA/R. The spatiotemporal dynam-
ics of the streaming angular velocity is given directly by Egs.
(11) and (19):

uy sinh[K(y -=R)]) ..,
Wz(y,t)=Re{E(R—1——Sinh(KR) )e ] (26)

We have compared Egs. (25) and (16) with the numerical
solution of the Navier-Stokes equations (4) and (5), using an
Euler finite-difference method. This shows very good agree-
ment over a range of reasonable parameter values where v,
<y, a relation which is expected from the literature [6,16].

C. A few additional remarks

It is instructive to see the effect of the molecular spin on
the streaming velocity. This can be achieved by a particularly
simple example. For very large values of K (i.e., small wall
effects), B~0, leaving only the first term on the right-hand
side in Eq. (25) relevant. This approximation effectively
means that the streaming angular velocity is a linear function
of y: w(y,0)=W'(y—R)cos(wt), where W'=u./R? is the
slope of the angular velocity with respect to y. In nanofluidic
systems the viscous forces will typically dominate, which
means that the Stokes parameter is relatively small. This jus-
tifies a Taylor expansion of the exponential and hyperbolic
functions to second order in \. Inserting these expansions
into the first term in Eq. (25) we obtain

FO + 2VrW,

2(vy+v,) Y(2R = y)cos(wr). (27)

ux(y ’t) =
A similar approximation can also be found expanding Eq.
(16). It can now be seen that, for low Stokes parameter and
for large values of K, the streaming velocity is characterized
by a quadratic spatial variation which corresponds to a tem-
porally oscillating Poiseuille flow. More importantly, from
this solution we can identify three different scenarios: At any
point y, the amplitude of the streaming velocity increases
with respect to v, if 2W'vyy>F, decreases if 2W' vy, <F,
and is constant if 2W'vy=F. This is illustrated in Fig. 1,
where the streaming velocity in the middle of the channel is
plotted as a function of the vortex viscosity for the three
different scenarios. This can also be understood from Eq. (4),
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where the vortex viscosity enters in the diffusion term, which
will contribute to a decrease in the streaming velocity, and in
the coupling term, which contributes to an increase in the
streaming velocity. It is then the difference between F, and
2W'y, that determines the effects of v,. From Fig. 1 another
important point is observed: The streaming velocity ampli-
tude is highly dependent on v, for low values of v,; however,
for high values the streaming velocity converges slowly to-
ward W’'R.

III. MOLECULAR DYNAMICS SIMULATIONS

The method for simulating an external force acting on a
confined fluid via NEMD is well developed by now (see
Refs. [17-19]), and we will here only briefly summarize the
computational methodology. The system is composed of a
fluid confined between two walls such that the direction of
confinement is the y direction. The wall atoms are initially
arranged on hexagonal packed planes, where the distance
between the planes is 0.80, o being a measure of length and
around one atomic diameter, i.e., 3—4 A. The wall atoms are
kept around their initial (or equilibrium) positions via a re-
storing spring force F(r(t))=—k[re,—r,(t)]. k=100 is the
spring constant, r,(¢) is the position of atom i, and r, is the
equilibrium position. Any physical quantity is expressed in
appropriate units of energy €, mass m, and length o, tradi-
tionally used in molecular dynamics simulations; see, for ex-
ample, Ref. [20]. We shall omit writing these units explicitly
throughout the paper and simply set e=m=0c=1. In order to
decrease the computational effort, we apply periodic bound-
ary conditions in all directions, such that a single wall will
act as a first and second wall [17,19]. The wall is made up of
three hexagonal layers in the y direction and has number
density p,,=0.868. The molecules are composed of N,=2
united atom units (UAU) or atoms. We shall here use the
term “atom” for both of these units. In the simulations the
overall atom number density is p=0.73 giving a molecular
density of p,,=0.365. All atoms (including wall atoms) inter-
act via the Weeks-Chandler-Andersen (WCA) pair potential

[21]
4(rl-_j12—ri—j6)+l if rijSZI/ﬁ,

. (28)
0 otherwise,

¢

uv A(” ij) = {
where r;; is the distance between the two atoms. The atoms
comprising the diatomic molecules are connected via the fi-
nitely extensible nonlinear elastic (FENE) potential [22]

1
U™™NF(r,) = — EkOR(Z) In[1 - (rj/Ry)*], rj=Ry. (29)

ij
ko=30 is a spring constant and Ry=1.5 is the maximum bond
length. The choice of these values is based on previous work
[18]. The fluid atoms are subjected to a temporally
oscillatory external force field in the x direction, F,(z)
=(F, cos(wr),0,0), where w=27/50 or 27/200. The wall
atoms are coupled to a Nosé-Hoover thermostat [23,24] such
that the heat generated in the fluid due to the viscous flow is
conducted away from the system at the wall-fluid boundary.
Since the external force amplitude is relatively small, the
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heat conduction at the wall ensures that the fluid temperature
is constant in time and space and equal to that of the wall,
which is 7=1.0. In principle, very small spatiotemporal
variations will be present; however, these are so small that
they will not affect the transport properties of the fluid. The
numbers of particles are 1800—4200 depending on the chan-
nel width. The equations of motion for the atoms are inte-
grated forward in time by the leapfrog integration scheme
[20] using a time step of 0.0025. The system is run for 2
X 10° time steps before sampling. After this initial period the
average momentum exhibits stable amplitude oscillations.

All the physical quantities are measured as spatiotemporal
averages in bins with volume Vy;,=L AyL_, where L, and L,
are the lengths of the simulation box in the x and z directions
and Ay=0.1 is the bin width in the y direction. In order to
increase the signal to noise ratio to a satisfactory level, we
divide the external force field period into eight equally long
time intervals, e.g., if the period is 50, f,,,—1,=Ar=50/8,
where n=1,...,8. If we assume that Ay is sufficiently small
we can formally write the average of a physical quantity x in
bin j in the time interval 7,=t=t¢,,, as

1 Tyt N Yn+l
Xj=— > xlf 1) = yydy |dt
At t, i=1 y

1 (8]
= EJ x(t)dt, (30)
[}’l

where x; is the corresponding molecular quantity of molecule
i, y; is the bin midpoint, and y,(z) is the center of mass and
Yne1=Yn=Ay. x;(t) is then the value in bin j. In practice, we
obtain X; using sample averages reducing this to a simple

J
(spatiotemporal) two-dimensional histogram method.

IV. RESULTS AND DISCUSSION
A. Viscoelastic properties

Before we present the results from the NEMD simulations
and compare the data with the Navier-Stokes solutions, we
must (i) make sure that we are in the Newtonian regime
where the viscosities are independent of the frequency and
amplitude of the external force, (ii) make sure that the fre-
quency is sufficiently low such that any relaxation phenom-
ena can be safely ignored, and (iii) obtain independent values
for the transport coefficients such that these can be used in
the analysis as well as be compared with the results from the
NEMD simulations. The zero-frequency zero-wave-vector
kinematic viscosities entering the Navier-Stokes equations
can be estimated via a separate equilibrium molecular dy-
namics (EMD) simulation using the Green-Kubo integral of
the autocorrelation functions of the relevant parts of the pres-
sure tensor [25]. The pressure tensor itself can be expressed
in the molecular or in the atomic formalism, and it has been
shown by several authors that the integrals of the autocorre-
lation functions of the pressure tensors converge to the same
value for sufficiently long times [26,27]. This is despite the
fact that the correlation functions themselves are different.
The molecular approach is often advantageous since the au-
tocorrelation function is smooth and faster decaying because
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it does not explicitly include the effects of high-frequency
bond stretching, bond bending, etc. [28]. Furthermore, the
rotational viscosity is calculated using the antisymmetric part
of the molecular pressure tensor [6], and we therefore apply
this formalism when evaluating the zero-frequency zero-
wave-vector viscosities. The molecular pressure tensor is mi-
croscopically given as [26]

P(r) = %/2 (%ﬁlm + E rij(t)Fij([))v (31)

L

where V is the volume, p,(?) is the momentum of the center
of mass of molecule i, M, is the total mass of the molecule,
r;;(t)=min(r;—r,) is the minimum periodic image vector dis-
tance between the center of mass of molecules i and j, and
F;(1) is the total force on molecule i due to all molecules j.
This force is

F(1) = E > Fiq5(0), (32)

aci Bej

where F,s(1) is the force acting between atom « in mol-
ecule i and atom B in molecule j. The kinematic shear vis-
cosity is then given directly by the equilibrium Green-Kubo
integral [6,29]:

V © fos os
= kaTpfO <P(0):P(t)>dt, (33)

Yy

where P(t)=%[P(t)+PT(t)]—%tr[P(t)]1 is the traceless sym-
metric part of the pressure tensor, V is the simulation vol-
ume, and kj is the Boltzmann constant.

Since the spin angular momentum is a nonconserved
quantity the vortex viscosity cannot be evaluated by a simple
Green-Kubo relation, but can be found by solving the gener-
alized Langevin equation [13]. From this the Laplace trans-
form of the vortex viscosity is given by [13]

_ c(s)
7,(s) 420 (34)
p® s

¢(s) is the Laplace transform of the antisymmetric stress au-
tocorrelation function:

©ld
4 f <P(0)'P(t)>€_”df- (35)

=307,

d
where P is the vector dual of the antisymmetric part of the
pressure tensor (see the Appendix). As pointed out by Evans
and Hanley [13], using molecular dynamics data and Eq.
(35) directly together with the relation in Eq. (34) will lead
to large numerical uncertainties for s — 0. To avoid this, the
authors assumed the functional form

10

ils) = L+s7 (36)

where 7 is the relaxation time. Substituting this into Eq. (34)
and rearranging yields
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7,(0)s

Y 7,(0)

c(s) = (37)

s+siT+

One can then fit the EMD data of ¢(s) to Eq. (37) using 7and
77,(0) as fitting parameters.

The Navier-Stokes equations are based on the assumption
that the system is in the Newtonian regime, where the shear
viscosity is independent of the external force frequency.
While the molecular and the atomic formalisms of the pres-
sure tensor discussed above yield the same shear viscosities
as t—, the two approaches differ greatly for small and
intermediate times. We therefore turn to the atomic formal-
ism when investigating the complex frequency-dependent
shear viscosity, which is defined as [25]

B ’ T 4 N —iwt
7 (w)=17'(w) +i7 (w)=§T JO (P (0)P,(1))e™""dt,

(38)

where P, (7) is the xy atomic pressure tensor element and
7' (w) and 7(w) are the real and imaginary parts of the
viscosity, respectively. For the molecular fluid studied here
P,, is given by [26,30]

P v WCA
ny = _2 siabl e E Tx mszF} iajpB
Vi i,a Mg
za#]ﬁ
1 FENE
+5 2 rx,iazBF\ iai | (39)
Bei
B#+a

where p;,(¢) and p, () are the momenta in the x and y
directions of the atom « in molecule i. Ty iajp 1S the minimum
periodic distance in the x direction between atom « in mol-
ecule 7 and atom S in j.

For T=1.0, p=0.73, the kinematic viscosities are evalu-
ated as v,=1.94*0.05 and »,=0.26=0.02. The errors are
based on one-half the maximum difference of five results.
The low vortex viscosity is in agreement with earlier findings
[13,16] and indicates that the molecular spin has only a small
effect on the streaming velocity. As mentioned in Sec. II, the
Navier-Stokes equations given in Egs. (4) and (5) provide a
complete description only if the chemical bond is rigid (and
if we are in the Newtonian regime). Here we model flexible
bonded molecules, and the stretching potential will affect the
pressure tensor. However, we have found that the resulting
vortex viscosity depends only slightly on this as long as the
spring constant is sufficiently large.

To follow the notation often used in rheology, we plot the
logarithm to the base 10 of the loss modulus G"(w)
=wn'(w) rather than the real part of the complex viscosity
itself (Fig. 2). In the Newtonian regime log;o[G"(w)] should
be a linear function of log;y,(w) with a slope of 1. This is
depicted in Fig. 2 as the broken line. We estimate that the
frequency-independent Newtonian regime is when w<<0.3.
Matin et al. [31] have investigated the strain rate dependence
of the shear viscosity in a rigid bonded diatomic WCA fluid.
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log,y(G")
T

logo(w)

FIG. 2. Logarithm of the loss modulus G”(w) versus the loga-
rithm of the frequency w. The broken line represents the Newtonian
behavior.

They showed that for a system with molecular density of
0.42 and temperature of 1.0 shear thinning takes place for
v>0.2. We can calculate the strain rate in our simulations by
numerical differentiation of the streaming velocity profiles,
which will be presented later. From this, we observe that the
strain rate in the interior of the channel is y<<0.11. Hence,
the system is in the Newtonian regime.

Finally, we evaluate the relaxation time given by 7
=W, o/2m, where ¥, is the first normal stress coefficient
in the limit of zero strain rate and is given via the relaxation

modulus G(7) [32]:
e’s} V 0 os os
U, ,=2| 1Go)di= P(0):P(1))dr. (40
1,0 fo tG(t)dt IOkBTjo f< (0) (t)> . (40)

This yields a relaxation time of around 0.07 = 0.06. It is in-
teresting to note that the relaxation time obtained using the
fit in Eq. (37) is around 0.04. The system relaxation time is
thus sufficiently low compared with the external force period
that memory effects can be safely disregarded.

B. Dynamical properties

In Fig. 3 we plot the molecular number density p,,, mul-
tiplied by the number of atoms per molecule N,=2. The
density is defined for bin j as p,, (1)=1/M;Z;_;M;, where i
runs over all molecules with center of mass located in the
volume associated with bin j at time . It is observed that, for
the external force and frequencies examined here, the density
profiles exhibit the same qualitative and quantitative behav-
ior as the corresponding Poiseuille flow [18].

1.6 T T T T T T T T T
141 B
1.2 B

1+ ]
0.8 u
0.6 H
0.4
0.2
0 1 1 1 1

PinNo

FIG. 3. Molecular density profiles p,, multiplied by N,=2. o
=2m/50 and F,=0.1. All eight profiles are shown and the data
points are connected with lines as a guide to the eye.

066707-6



DYNAMICAL PROPERTIES OF A CONFINED DIATOMIC...

FIG. 4. (a) Streaming angular velocity profiles for four different
time intervals where w=27/50 and A =0.75 (circles with connect-
ing lines). Punctured lines represent the fits to the time average of
Eq. (26) where u,. and K are used as fitting parameters. (b) Angular
streaming velocity profile for w=2/50 and A =~2.28 (circles with
connecting lines). The broken line is the time average of the solu-
tion given in Eq. (18) where ®=1.21, vy=1.94, and v,=0.25. Only
one profile is included for clarity.

The total molecular spin angular momentum per unit mass
in bin j is given by [8]

(1) =0(1) - w,(1), (41)

where ©;() is the total moment of inertia tensor per unit
mass evaluated with respect to the center of mass. In the
molecular dynamics simulations the molecular spin angular
momentum and the moment of inertia are

s(1) = 2 Fio(t) X Piolt), (42)

iej

0,00 =2 TN -r 00}, (43)

1
iej
r;,(7) is the distance from the center of mass of atom « in
molecule i, p;,(7) is the momentum, and m;, is the mass of
the atom. The angular streaming velocity is obtained from
Eq. (41), noting that only the z vector component is nonzero.
The results can be compared with the solutions to the Navier-
Stokes equations, that is, from Eq. (30):

1 I+l

WZ:E . w.(y,t)dt, (44)
where w_(y,7) is given in either Eq. (26) or (18). In Fig. 4(a)
we have plotted w, obtained from the molecular dynamics
simulations for four different time intervals where the angu-
lar frequency of the driving force is 27/50 and where the
Stokes parameter is around 0.75. The value of the Stokes

PHYSICAL REVIEW E 77, 066707 (2008)

parameter is based on the viscosities found in Sec. IV A.
From this we have compared the results with the best fit to
the time average of Eq. (26). The parameters u, and K are
used as fitting parameters, and 7 is set such that Eq. (44) is in
phase with the molecular dynamics results. The agreement is
excellent except for points around ¢/2 away from the wall.
The reason for this is likely linked to the large density varia-
tion in this region (see Fig. 3). The best fit predicts values
u.=0.3 and K=9. It should also be noted that away from the
wall w,= %&ﬁx/&y, which means that in the interior of the
channel the effect from the wall on the molecular rotation
vanishes. This is also indicated by the relatively large value
of K. Figure 4(b) shows a streaming angular velocity profile
for w=27/50 and A=2.28 which is obtained by increasing
the channel width but keeping the strain rate sufficiently low
such that the system is in the Newtonian regime. This is
achieved by setting F,=0.0425. For this relatively large
value of the Stokes parameter we cannot expect Eq. (26) to
be valid, and the broken line represents the time average of
Eq. (18) using v, as a fitting parameter. The parameter value
for ®=1.21 is calculated directly in the NEMD simulations
and vy=1.94 which was found in the EMD simulations. This
fit predicts v,=0.25, in excellent agreement with the value of
0.26 =0.02 found previously from the equilibrium simula-
tion.

It is here important to appreciate that this is information
about the fluid that is traditionally excluded. For small values
of the Stokes parameter, i.e., where the viscous forces are
dominating, the molecular rotation is linear with respect to y.
For large Stokes parameter, on the other hand, we observe a
large variation in the molecular rotation as we move from the
wall-fluid boundary into the interior of the channel; however,
in the interior region the molecular rotation varies only
slightly.

The molecular streaming velocity in bin j at time ¢ is
defined via u(t)==;;M;v,(1)/Z;. ;M;, where v,(t) is the cen-
ter of mass velocity of molecule i with center of mass in bin
J (see also [18]). In Fig. 5 we have plotted streaming velocity
data for two different situations: Figs. 5(a) and 5(b) are for
w=21/200, giving A=0.37, and Figs. 5(c) and 5(d) are for
w=21/50 and A=2.28. In Figs. 5(a) and 5(b) the full lines
represent the time average of the solution to the Navier-
Stokes equation for low Stokes parameter, Eq. (25). In Figs.
5(c) and 5(d) the full lines are fits to Eq. (16). The parameter
values used are found from the EMD simulations presented
earlier. For Figs. 5(a) and 5(b) u, and K were fitted in Fig.
4(a). The profiles allow slip boundary conditions, which we
introduce in an ad hoc fashion:

1

Tn+l
@:Eﬁ1wmn+Mm, 45)

where u, is the streaming velocity at the wall-fluid boundary.
The molecular dynamics data and the solution to the Navier-
Stokes equations show a very good agreement. It is impor-
tant to stress that according to the discussion in Sec. IV A
both systems are in the Newtonian regime. Another impor-
tant point is that the limiting solution given in Eq. (16) also
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FIG. 5. (a) Streaming velocity profiles for four different time intervals (circles) where w=27/200 and A ~0.37. F,=0.02. Full lines
represent the time-averaged solution to the Navier-Stokes equation (25). The slip velocity u is found to be 0.080, 0.058, —0.059, and
—0.081. (b) Same as (a) but for a single time interval. uy=0.102. (c) Streaming velocity profiles for four different time intervals (circles)
where w=27/50 and A=2.28. F,=0.0425. Full lines are the time average of Eq. (16) using ®=1.21. The slip velocity u, is found to be
0.076, 0.071, —0.073, —0.075. (d) Same as for (c) but for a single time interval. uy=0.076.

predicts satisfactory profiles for low values of A, indicating
small wall effects.

We can now make a quantitative analysis of the effect of
the coupling between the molecular rotation and the stream-
ing velocity. To do so we define the maximum flow through
the channel during the external force period as

L,
0= sup fﬂux(y,t)dy, (46)

r re[0:2mw]J o

where u,(y,?) is given by either Eq. (16) or Eq. (25). Note
that we underline the dependency of the vortex viscosity as a
subscript. As we have shown earlier, it is not expected that
the streaming velocity is much affected by the molecular
rotation in the limit A—0 and we shall therefore discuss
only the case for é&+&,—0, i.e., for Eq. (16). In Fig. 6 we
have plotted 1—Q‘;‘:‘"/ Q‘;’;’B as a function of v,/ v, for three

w=0.126 —
0.012 + w = 0.063 e
w = 0.042 e
001}
5L
& 0.008 ¢t
& 0.006
TR I
= 0.004 . e
0.002
0 . . . .
0 0.05 0.1 0.15 0.2 0.25
e /1o

FIG. 6. (Color online) Effect of molecular rotation on the maxi-
mum fluid flow as a function of the ratio between the rotational and
shear viscosities and the frequency. The curves are based on Eq.
(16) using parameter values vy=1.94, F,=0.1, R=6, and O=1.21.

different frequencies. First, we observe that the maximum
flow in the channel decreases (the curves in Fig. 6 increase)
as a function of v,/ v, that is, the coupling between the ro-
tational and the translational motions will lead to a decrease
in the maximum flow. This effect has a maximum, and it then
slowly converges toward a plateau. This means that even for
a fluid with a large vortex viscosity the effect will be rather
limited, depending on the frequency. Second, and as ex-
pected, the molecular rotation seems to have an important
effect on the flow for sufficiently large frequencies: the maxi-
mum flow may be reduced by more than 1% for w=0.126.
For w=27 (not shown in Fig. 6), the maximum flow is re-
duced by more than 3.5% if the frequency dependency of the
transport coefficients is ignored.

V. CONCLUSION

In this paper we have investigated the fluid dynamics of a
diatomic fluid undergoing zero mean oscillatory flow. Two
limiting solutions to the Navier-Stokes equations that in-
cluded the coupling between the spin angular and the trans-
lational momenta were presented. We showed that, for suffi-
ciently low velocity slip at the wall-fluid boundary, the
solutions for the streaming velocity could be augmented with
a simple ad hoc slip and agreed very well with the molecular
dynamics data. In addition to the obvious fact that this then
allows us to extract additional information about the molecu-
lar rotation, it also enables us to study the coupling between
the molecular rotation and streaming velocity. We showed
that ignoring this coupling will lead to an error in the maxi-
mum flow of about 1% in the Newtonian regime, but can be
much larger, more than 3.5%, for sufficiently high values of
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v, if the frequency dependence of the viscosities can be ig-
nored. It should be mentioned that there are many other ways
of measuring the coupling effect. For example, the average
flow over one-half the oscillation period will not be affected
by more than a few tenths of a percent, whereas the maxi-
mum difference in the flow profile may be very large (more
than 10%).

This work has been limited to the study of essentially
rigid bonded diatomic molecules. The dynamical properties
of more complex fluids could also be undertaken, e.g., fluids
composed of n-alkanes, branched polymers, etc. In this case,
however, one has to take care when constructing the Navier-
Stokes equations, since the molecular details may have im-
portant effects on the fluid dynamics. For such complex flu-
ids the spatiotemporal structural behavior also becomes
interesting and phenomena such as molecular deformation
and alignment could be studied.
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APPENDIX: DERIVATION OF THE NAVIER-STOKES
EQUATION

In the case of zero temperature gradient, the relevant bal-
ance equations describing the mass density and the linear and
angular momentum changes are (in nonconservation form)

[6]

dp

E=—P(V-U), (A1)

d

“C=PF,~V-P, (A2)
d d
d—j=pF8—V~Q—2P. (A3)

Here p is the mass density, u is the streaming velocity, F, is
the external force per unit mass, P is the pressure tensor, s is
the spin angular momentum, I, is the applied external torque
d
per unit mass, and Q is the couple tensor. P, which is the
axial (or pseudo) vector dual of the antisymmetric part of the
a
pressure tensor P, can be written as

d 1 (a a a )
.pT
P=e:P'=(P.P.Py).

(A4)

a
where € is the third-order Levi-Civita tensor, and Pop, where
a
a,Bex,y,z, is the @B element of P. The pressure tensor is
often split into an equilibrium part p1 and a viscous part II:

PHYSICAL REVIEW E 77, 066707 (2008)

P=p1+II, (A5)

p being the equilibrium pressure. The viscous part is then
os

decomposed into a traceless symmetric part IT and an anti-
a
symmetric part IT:

os a

Im=T11+11+11, (A6)

where [1=tr(IT)/3. It is important to note that IT is equal to

a d a

P, which means that the vector dual IT of IT is given by Eq.
(A4). Likewise, the couple tensor is decomposed into trace-
less symmetric and antisymmetric parts:

os a

Q=01+Q+Q. (A7)

a d

The vector dual of Q is denoted Q. The linear constitutive
equations that relate the forces and the conjugate fluxes in
the balance equations are then written as [1,6]

=~ 7,(V-u), (A8B)
I =~ 27(V), (A9)
d
IM=-7(VXu-2w), (A10)
Q=—§U(V~W), (All)
8:—2g(vujv), (A12)
d
Q=-7(VXw). (A13)

Here 7, is the bulk viscosity, 7, is the shear viscosity, 7, is
the vortex (or rotational) viscosity, £,, ¢, and {, are the
equivalent vortex spin viscosities, and w is the streaming
angular velocity. Note that in the presence of temperature
gradients cross-coupling terms appear in the constitutive re-
lations [6]. The thermodynamic force VXu—-2w is some-
times referred to as the sprain rate [33]. Substituting the con-
stitutive relations into the balance equations, assuming
constant transport coefficients and the absence of applied ex-
ternal torque, we obtain the corresponding Navier-Stokes
equations [1,6]:

du
p;=pFe—Vp+(m+ 7/3—=,) V(V-u)
+(70+ 7)Vu+27,(V X w), (A14)
ds
PZ=277r(V X u_2w)+(£v+§/3_§r)v(v'w)

+(L+2)Vw. (A15)

This, together with Eq. (A1) and an appropriate equation of
state, completes the fluid dynamical description.
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